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We present here a new type of generalization of the conservation law of circulation, 
in two dimensions, and of the helicity-conservation law in three dimensions assuming 
zero potential vorticity. The conserved quantities keep their usual expressions 
11 k-rot v d, r, j1j v-rot vd, r, respectively, as in the barotropic case. 

These generalizations are based upon the general formulation of conservation laws 
in terms of potentials (here the Clebsch potentials). The conserved currents that we 
derive are expressible in terms of the ordinary physical variables (t,  t ,  U ,  P ,  p )  only, 
as they should. 

1. Introduction 
One of the fundamental theorems of fluid dynamics states that the velocity 

circulation along a closed contour moving with the fluid is a constant (Kelvin 1868) 
if the flow is assumed barotropic. In three dimensions it has more recently been shown 
(Moreau 1961 ; Betchov 1961 ; Moffatt 1969) that the quantity 

H = j j j u - r o t  ud, r, 

called helicity, is a constant, still assuming isentropic flow. Several authors have 
attempted to remove that restriction, and have looked for generalizations also valid 
for non-barotropic flow. Eckart (1960) has shown that Kelvin’s theorem still holds 
if one replaces the circulation of velocity v by that of u- r ]  VS, where r] is one of the 
potentials occurring in the Clebsch transformation. (Hereinafter we refer to these as 
the Clebsch potentials, for brevity.) Mobbs (1981) has developed this idea and has 
given corresponding generalizations of the Helmholtz theorems, and of the helicity- 
conservation law as well. 

In  spite of the interest of such works, it  must be pointed out that Mobbs’ 
conservation laws are not expressible in terms of the usual physical variables only 
(r, t ,  P ,  v, p) ,  and involve ‘potentials’. Such generalizations are in any case far from 
unique. 

We ,present here a different type of generalization, of the two-dimensional 
velocity-circulation law, and of the three-dimensional helicity-conservation law 
assuming zero potential vorticity. The conserved quantities still read 

I jk*ro tvd , r ,  ~ ~ ~ v . r o t v d , r  

respectively, as in the barotropic case ; their expression is given in terms of well-defined 
physical variables only, and does not involve potentials. 

These two generalizations are most conveniently derived through the Clebsch 
transformation for the velocity field. 
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We first recall some basic results underlying the Clebsch transformation (Clebsch 
1859; Lamb 1932; Seliger & Whitham 1968) and the general formulation of 
conservation laws; we then proceed with the explicit derivation of the two proposed 
generalizations, assuming adiabatic flow and an arbitrary entropy distribution. 

2. The Clebsch transformation 
The Clebsch transformation for the velocity field, 

v = V$+aV/3, 

was first introduced during the 19th century (Clebsch 1859) and applied to barotropic 
flow only. Herivel(l955) proposed a similar formula applying to non-barotropic flow : 

v =  V$+VVS, 

but his result was not of general validity. Serrin (1959) and Lin (1963) introduced 
additional terms : 

v = Q $ + q V S +  E aiQ& 

making the result completely general, at  the expense of introducing six additional 
potentials at and Pi. Seliger & Whitham (1968) have indicated that for the most 
general flow the velocity field can be written in terms of four potentials only, instead 
of eight, as follows: 

where $,v, a and /3 are four potentials whose evolution is governed by the equations 

3 

i - 1  

v = V$+VVS+aVP,  (1) 

where w is the specific enthalpy, defined by the thermodynamical relation 

d P  
dw = TdS+-. (3) 

P 

and T ,  P, p and S denote the temperature, pressure, density and entropy; the operator 
dldt = a /a t+v*V.  Thus a and /3 are Lagrangian coordinates, as well as the entropy 
8: 

They are in general multivalued functions of r and t. The vorticity is given by 

dS/dt = 0. (4) 

( 5 )  rot v = VV A vs+ V a  A V/3. 

The essential property of the system (1)-(4) is that the Euler equation 

dv QP -+- = 0, 
dt P 

which we may also write as 

- u h rot v + T VS- V($2+ w), (6) 
av 
at 
-- 

is automatically satisfied; therefore, if potentials $ , q ,  a and /3 have been found at  
an instant t such that the velocity field is expressed by (l),  that expression remains 
valid at  all times if the potentials are made to evolve according to (2). 
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It is always possible to find four potentials satisfying the three constraints (1) on 
the initial velocity field. Therefore the Seliger- Whithum formulae are applicable to the 
most general Jlow satisfying the Euler equations. The Herivel formulae, on the other 
hand, presenting only two adjustable potentials (one if the flow is isentropic) cannot 
describe arbitrarily given initial velocity distributions. 

The simplified form derived by Herivel will be sometimes considered as a heuristic 
approach in the present paper, keeping in mind its lack of generality, but we otherwise 
adopt here the Clebsch transformation in the form (1)-(5) proposed by Seliger & 
Whitham. 

The complete generality of Seliger & Whitham’s formulae has been disputed, 
mostly on the grounds that the Clebsch potentials involved may be multivalued or 
singular (Bretherton 1970; Mobbs 1982); this does not constitute a drawback here, 
where we are only interested in the local aspect of the theory. The conservation laws 
(14) and (22) that we derive have an expression that is independent of potentials 
(unlike Mobbs’ results) ; the SeligepWhitham transformation indicates that they hold 
at least in a neighbourhood of an arbitrary point, and thus they hold everywhere, by 
continuity. After they have beendiscovered - by means of the S-W transformation - it  
is in any case straightforward to verify them by elementary methods in all their 
generality, without appealing to the Clebsch representation any more ; this has been done, 
for the sake of completeness, in Appendix B. Thus the question of the general validity 
of the Clebsch transformation is in any case irrelevant in the present work. 

3. The general formulation of conservation laws 

The general form of a conservation law is, in three dimensions, 
3.1. Eulerian formulation 

divj+- ajo - - o, 
at 

where j = (j,, jg&) is the flux andj, the density of the conserved quantity Q: 

Q = j J j . i o  4 r9 (7)  

and the components can be written down in the form of Jacobians involving three 
potentials A, B and C as follows (Appendix A; see also Hollmann 1964): 

\-  

J 
where (a, 6 ,  c )  denotes the mixed product a-b  A c .  

given by the differential equations 
The 4-dimensional lines of current are well-defined geometrical objects, and are 

jod r  = j d t  

(in particular, when j = j, u, the lines of current coincide with the fluid particles’ 
trajectories). 

Substituting for A,  B and C the Clebsch potentials yields various interesting results. 
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Thus a variant of the mass conservation law results (Ertell960) upon the substitution 
(A, B, C) = (S ,  a, /3) ; the corresponding density is 

and the flux j = j ,  v reduces to the convection current; under such conditions the 
quantity e = j , / p  is therefore a Lagrangian variable : 

de 

it is called the ‘potential vorticity’ (Ertel 1942; Katz & Lynden-Bell 1982). The 
conserved quantity jSje(S,oc,/?)pd,r is obviously related to the law of mass 
conservation. t 

3.2. Lagrangian formulation 

For obvious physical reasons (namely Galilean invariance), the Eulerian flux j must 
contain a term j, v ,  which represents the ‘convection term’, and a residue j,, which 
may be called the ‘ Lagrangian flux ’ : 

j = j, v+j,. 

It is straightforward to show that the term j, is given by the same formulae (8) as 
j itself, provided that the partial derivatives a/at are replaced by the total derivatives 
d/dt. The proof goes as follows. 

Consider the 2-component ofj,: from (8) and the above definition ofj, we have 

- - a ( ~ ,  B, c) a ( ~ ,  B, c) +v a(A, B, c) a ( ~ ,  B, c) 
a(y ,z , t )  +’, a(y,z,x) a(y,Z,Y) ~ ( y , z , z )  

(the last two determinants are both identically zero, having two column vectors 
proportional). What is written on the second line is just a(A, B, C)/a(y, z ,  t) with a/at 
replaced by a/at + v, a/ax + wy a/ay + v, a/& as stated. This completes the proof of the 
announced result. 

Taking account of the continuity equation, i t  is easily seen that the Lagrangian 
formulation of a conservation law reads 

(9) 

The term pL = j , / p  may be called the Lagrangian density. 
This procedure usually results in a notably simplified formalism. 

t This is evident from the fact that the two conserved currents are everywhere parallel: the lines 
of current coincide with the particles’ trajectories. It must be noted that the two conserved 
quantities ( j j jpdar  and j j j p e  d,r) still differ from one another. Furthermore, we do not mean 
of course that Ertel’s discovery of a new explicit Lagrangian variable (the potential vorticity) did 
not constitute a result of fundamental importance in theoretical fluid dynamics. 
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4. The conservation law of circulation in the case of two dimensions 
Conservation laws in two dimensions assume a simpler form: 

The above representation is sometimes used in magnetohydrodynamics for the 
magnetic field, which is divergence-free ; the potentials A and B are then usually called 
the Euler potentials. 

We first consider the simplified Clebsch transformation : 

v = V$+qVs, rotv = Vq AVS, (11)  

which is only valid for a particular class of flows. The result that we derive will 
nevertheless turn out to be completely qeneral. 

Choosing now for A and B the potentials q and S yields a conservation law, with 

where k is the (constant) unit vector normal to the flow ; thus the conserved quantity 
is, by Stokes theorem, 

C = k*rotvdxdy = v - d l ;  (13) li I 
that is, the velocity circulation. Taking account of the flux j ,  the conservation law reads 
explicitly 

(14) div {(k-rot v )  v +  k A !Z'Vs)+t (k-rot v )  = 0, 
a 

in which (k-rotv) v merely represents the convection term. 
Thus in the present case the Lagrangian flux is 

j ,  = kA TVS. (15) 

The above results (12)-( 15) are independent of the restrictive assumption (1  1). In 
general, using Seliger & Whitham's formula ( 5 ) ,  the conserved current is a sum of two 
conserved currents of the general form (lo), namely 

from which the formulae (12)-(15) follow, without modification (see also Appendix 
B for another, elementary, proof). 

If thejow is isentropic the Lagrangian flux (15) vanishes ; the conservation law then 
reduces to a variant of the mass-conservation law, i.e. the Lagrangian density 
(k-rot v ) / p  becomes a Lagrangian variable, as is well known: 

Under such circumstances the integral j jk - ro tvdxdy is a constant on any finite 
surface moving with the fluid; that integral is just the velocity circulation, and the 
Kelvin theorem is thus recovered. 
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5. Three-dimensional flow : the helicity-conservation law 

1961 ; Betchov 1961) that  the helicity 
I n  the case of three dimensions, i t  has been shown by Moffatt (1969) (see also Moreau 

c * *  

is a constant for isentropic flow. We now show that the isentropic assumption can 
be relaxed, a t  least for the (rather large) class of flows characterized by a vanishing 
potential vorticity 

1 

P 
e = -rot v o V S  = 0 

(that is, the class of flows for which (19) holds at some 'initial' instant t ;  i t  also holds 
a t  all times during the subsequent evolution, since de/dt = 0). 

We again start with the simplified Clebsch transformation (1 1 ) : 

v = Vq5+qVS, (20) 

but the result will be seen to apply independently of that restricting assumption. 

density 
Let us choose for potentials (A, B, C) = (AS,#, q )  ; the resulting conservation law has 

and expresses the conservation of helicity H (given by (18)). Explicitly we obtain by 
means of the general formulae (8) the helicity-conservation law 

div{(w-9') rotv+vATVS}+pdt ~ = 0, ( o m ~ t  
written according to the Lagrangian formulation (9). The total flux, including the 
convection term, is 

(23) 

The above conservation law (22) and (23) applies independently of the restrictive 
assumption (20). The most direct way to see this is to  observe that the conserved 
current is the sum of three conserved currents of the general form (8); namely, using 
Seliger & Whitham's formula (1) : 

v'rotv = (V~~,V~,V/~)+(V~~,V~,VS)+(~V~,I-~V~,VS,V/~). 

j = (V'rot v )  v+  (w -!p2) rot v + v A TVS. 

Under the restriction (19), (Va ,  VS, Vp) = 0, and we may rewrite 

j, = v'rot v = (Vq5, Va, Vp) + (Vq5, Vq, VS)  + (V(aq), VS, Vp), (24) 

which is of the required f0rm.t 
I n  the barotropic case the last two currents vanish, and one gets 

j, = v-rot v = (V#, V a ,  Vp). (25) 

t It  is of course also feasible to derive the helicity-conservation law (22) by elementary methods, 
without appealing to the formalism (8) and (24) in terms of potentials. This has been done for 
completeness in Appendix B. 
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generalization proposed by Mobbs (1981) coincides formally with 

jOMobbs = c v $ 7  va7 vB) 
The non-barotropic 
the above formula: 

= (u  - 7 V8) (rot v - v q  A V8). (26) 

6. Conclusion 
Several authors (e.g. Eckart 1960; Mobbs 1981) have attempted to generalize the 

vorticity theorems and helicity-conservation law to non-barotropic flow. Eckart's 
results suggest the existence of an intimate relation between the Clebsch potentials 
and the vorticity-conservation laws. 

This relation is here elucidated through the consideration of the canonical 
formulation of conservation laws in terms of potentials (8). That formulation seems 
to constitute a powerful tool for analytical studies, although it does not appear to 
have been frequently used until now in fluid dynamics (see, however, Hollmann 1964). 

The generalized conserved currents that we derive are expressible in terms of 
ordinary physical variables only. 

Appendix A. The canonical formulation of conservation laws 
We introduce for convenience the notation xo = t .  Having defined ($3.1) the lines 

of current, it is natural to introduce four potentials xi,  xi, x; and xi  such that the 
lines are the intersections of surfaces 

xi = constant (i = 1,2,3),  

and xi may be kept arbitrary. Choosing the Cartesian metric in these new coordinates : 

ds2 = z ( d ~ ; ) ~ ,  

let us write J i ,  J ; ,  Jh and Ji for the contravariant components of the 4-vector current. 
It is geometrically evident that the last three components are identically zero ; then 
the condition that the vector be divergence-free reads 

3 

L-0 

which integrates as Ji =f(xi ,x; ,x j ) .  Now let us go back to the original coordinate 
system by means of the well-known transformation formula for the divergence 
(Landau & Lifshitz 1951) 

where a(x')/a(x) is the Jacobian of the coordinate transformation, and J, is given in 
terms of the Ji by the vector-transformation,formula (Landau & Lifshitz 1951) 

3 ax. 
J, = --+JL. 

k-Oaxk 

In the present case the only contribution comes from the k = 0 term, hence 

J - y f ( ~ '  ax, X' x'). 
-ax" l7 2' 
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Let us redefine 

in order that the conservation law read 

as usual. Then we have, by an elementary property of Jacobians, 

That is. 

It is always possible to choose new potentials A, B and C such that the Jacobian 
a(A, B, C)/a(x; ,  x i ,  xi) be equal to an arbitrarily given function f(x;, x;1, x i ) ,  since that 
amounts to a single partial differential equation for the three unknown functions A, B 
and C. Therefore we obtain the following canonical form of the most general conservation 
law, in terms of three potentials: 

as in (8). 
The potentials may be multivalued, even singular, but that is of no consequence 

whatsoever as long as the current componentsj, remain expressible in terms of well-deJined 
physical variables only (such as r,  t ,  P ,  v and S). 

In general, what is called here the conserved quantity 

need not always be a strict constant, if the flux o f j  at  infinity does not vanish. What 
matters essentially is that, in an arbitrary volume V bounded by a surface S the 
variation of Qv E j j j v jod3r  is determined by the flux jjs j.d,S. Then the con- 
servation law exactly determines Qv at all times when the initial conditions and the 
evolution of the physical conditions a t  the boundary S are given; it thus plays the 
role of a first integral of the equations. 

Appendix B. Elementary proofs of the new conservation laws 

mentioning the Clebsch potentials. 
It is of course possible to give proofs of the conservation laws (14) and (22), without 

Equation (14) may be derived by means of Vazsonyi’s equation as follows : 

1 1 (e) = -(rot v * V )  u+-VT A VS, 
dt P P P 

which is valid in three dimensions. In two dimensions Vazsonyi’s equation reduces 
to 

=-div(kATVS), 
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which is the Lagrangian form of (14). It is also worth mentioning that (17) follows 
directly from Vazsonyi’s equation. 

Equation (22) may be derived starting from Mobbs’ (1981) equation (28) : 

p$ (7) = (T VS-Vw)*rot u+ rot v *  V(?p2) + ( v ,  VT, VS). 

It is straightforward to check that, for zero potential vorticity, the right-hand side 
reduces to 

- div {(w-?p2) rot v+  v A T Vs), 
which proves (22). 
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